15 Maret 2011

selingan di tengah bab 3 dari 6 bab makalah medan gaya berat bumi yang tak kunjung usai

rejeki itu memang Tuhan yang atur, tapi kesuksesan, kita yang menentukan
(wita anggraini, mamah saya)
the faster you do those shits, the faster you will reach your big dream
(denny sudrajat, teman saya yang suka musik jes)

intisari dari mata kuliah medan gaya berat bumi (menurut saya) adalah: penentuan geoid.

anggap gw seorang mahasiswa geodesi dan geomatika yang sedang berusaha menjelaskan what the f*** geoid is and what the f*** this f***in' thing does. itung" latian jadi dosen, nyahahahahaaa. kaaaaalo jadi.

apa itu geoid?

geoid merupakan suatu model matematis yang merepresentasikan bidang geopotensial bumi, di mana geopotensial sendiri berarti bidang yang tegak lurus dengan arah gaya berat bumi. istilah kata, gaya berat yang dialami di seluruh permukaan bidang ini adalah sama.

ngapain coba nentuin geoid? capek" amat? puyeng lagi pake berbagai macam rumus dengan berbagai macam metode dan kawan"nya?

jadi. geoid dibutuhkan sebagai acuan pengukuran vertikal, atau biasa dikenal sebagai pengukuran tinggi permukaan bumi. kenapa acuannya mesti si geoid? karena sebenarnya geoid ini merupakan pendekatan dari muka laut rata-rata, atau biasa dikenal sebagai mean sea level (msl). coba deh, dari data ketinggian gunung" yang tersebar di seluruh permukaan bumi ini. mau semeru kek, mau salak kek, sampe kilimanjaro dan everest, mereka pasti mengacu pada msl, atau yang lebih familiar, biasanya dipakai satuan mdpl, yang merupakan singkatan dari meter di-atas permukaan laut.

lah bukannya udah ada teknologi GPS? itu kan udah memuat koordinat posisi dan tinggi dari suatu titik?

naaah, ini yang ga banyak orang tau. data tinggi di GPS (terutama yang handheld, yang kayak henpon, yang bisa dibawa ke mana") itu hanya mengacu pada suatu model bumi yang disebut sebagai elipsoid. elipsoid sendiri merupakan elips yang diputar pada sumbu tegaknya. gambaran gampangnya, kayak coklat smarties, tapi ga segepeng itu, hehe. elipsoid ini kan bentuknya simpel banget, cuma kayak bola yang rada pipih. sementara bumi kita ini kan bopeng sana sini. ga rata permukaannya. maka itu, elipsoid hanya digunakan sebagai acuan posisi, yang notabene, horizontal. sementara untuk vertikalnya, kita pake si geoid. beda tinggi antara geoid dan elipsoid ini tentunya berbeda-beda di setiap titik di permukaan bumi. bayangkan. ketika lo lagi nyari minyak nih. bukannya mengacu pada tinggi geoid, lo malah pake tinggi elipsoid. weh. bisa ngaco jaaaaauuuuuuuhhh. bisa" minyaknya berada pada kedalaman sekitar 30 meter lagi dari titik yang tadinya ditentukan dengan acuan elipsoid. rugi, nyeeet!!

ilustrasi perbandingan tinggi antara geoid dan elipsoid. 'spheroidal height' artinya acuan tinggi nol-nya dari si elipsoid.
zoom in: tinggi yang dianggap 'benar' dan 'bisa dipercaya,' acuan nol-nya dari si geoid.

hooo.. begitchuuuww.. lha terus cara dapetin geoidnya gimana?

kan tadi udah dikasi tau, kalo di permukaan geoid itu gaya beratnya relatif sama.. jadi, data pertama yang dibutuhkan untuk menentukan geoid adalah........

gaya berat!

cerdas!

gravitasi gitu maksudnya?

eitsss.. bukaaaann.. gaya gravitasi itu cuma salah satu komponen dari gaya berat. gaya berat sendiri merupakan penjumlahan, atau bahasa kerennya, resultan, dari gaya gravitasi dan gaya sentrifugal. aahh yang ini ribet ah. pokoknya ada lah rumusnya. jadi, kalo kita udah dapet data gaya gravitasi dengan segala perhitungan ngejelimet, kita bisa dapet beda tinggi antara si geoid dengan elipsoid. naaah, baru deh, beda tinggi relatif ini dimodelkan, dan, tadaaaa!! jadilah geoid!!!

hoooo.. i see.. i see.. jadi intinya, kalo mau ngukur ketinggian, acuannya geoid?

bethul. paling tidak untuk acuan titik pertamaa.

terus kalo posisi, pake elipsoid?

tephaat.

terus kalo penentuan elipsoidnya sendiri gimana?

maaf, itu bukan bagian dari mata kuliah ini. silakan mengambil mata kuliah geodesi geometrik. dan selamat bergulat (lagi) dengan berbagai macam rumus penuh cinta.

yeaahhss!!! at least ada gunanya gw jungkir balik bikin paper tentang beginian. monyooong. belajar juga kan gw, hahahaha!

our lovely geoid

5 komentar:

  1. berhubung tulisan ini saya buat ketika muda, dan belum bersentuhan lagi dengan geoid, berikut koreksi dari Monsieur Theodorus Arnadi Murtiyoso:

    geb geoid bukan model matematis kan
    karena dia complex
    bisa didekati melalui model matematis harmonis sferik
    abis baca blog lo hahaha
    iyaa sbnrnya gw kmaren cari2 gereja dan liat si stephensmunster ini
    oh dan gw baru tau lho sebenernya yang bener itu h= h ellips + undulasi + gamma
    tapi gamma sangat kecil kalo geoid dekat dengan ellipsoid
    dan h ortometrik itu ternyata beda lagi bukan yang h ellips + undulasi, itu belum bisa disebut ortometrik
    disebut h ortho apabila buat nentuin undulasi, g nya diukur
    kalo g nya diitung dari model harmonis sferis, namanya h normal
    kira2 begitu sommaire dari cours de geodesi gw kmaren yang kebetulan lagi bahas geoid juga hahaha
    beda antara h ortho dan h normal disebut delta dekametrik

    untuk berkorespondensi dengan beliau, dapat menghubungi facebook dengan nama lengkap seperti di atas. semoga membantu :D

    BalasHapus
  2. beraaaatttttt...ampuuuuun

    BalasHapus
    Balasan
    1. iya koko theo mainannya emang berat kaka frez, saya yang enteng" ajah hahahaha

      Hapus
  3. Hehehe,,dengan bahasa kaya gini lbih enak dipelajari n gak bikin "spaneng"
    :D

    BalasHapus

Template developed by Confluent Forms LLC